
©Silberschatz, Korth and Sudarshan4.1Database System Concepts

CS & IT College

2018/2019 Semester 1

CS203 DB Principals

IS206 Fundamentals of DB

Chapter 4-1: SQL

Asst.Prof. Asaad Alhijaj
Reference:
“Database System Concepts Fourth Edition” by Abraham Silberschatz Henry F. Korth S. Sudarshan ,

McGraw-Hill ISBN 0-07-255481-9

 Basic Structure

 Set Operations

 Nested
Subqueries

 Derived Relations

 Modification of the

Database

 Embedded SQL,

ODBC and JDBC

©Silberschatz, Korth and Sudarshan4.2Database System Concepts

Schema Used in Examples

©Silberschatz, Korth and Sudarshan4.3Database System Concepts

Basic Structure

 SQL is based on set and relational operations with certain

modifications and enhancements

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ais represent attributes

 ris represent relations

 P is a predicate.

 This query is equivalent to the relational algebra expression.

A1, A2, ..., An(P (r1 x r2 x ... x rm))

 The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan4.4Database System Concepts

The select Clause

 The select clause list the attributes desired in the result of a
query

 corresponds to the projection operation of the relational algebra

 E.g. find the names of all branches in the loan relation
select branch-name
from loan

 In the “pure” relational algebra syntax, the query would be:

branch-name(loan)

 NOTE: SQL does not permit the ‘-’ character in names,

 Use, e.g., branch_name instead of branch-name in a real
implementation.

 We use ‘-’ since it looks nicer!

 NOTE: SQL names are case insensitive, i.e. you can use capital
or small letters.

 You may wish to use upper case where-ever we use bold font.

©Silberschatz, Korth and Sudarshan4.5Database System Concepts

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct

after select.

 Find the names of all branches in the loan relations, and remove

duplicates

select distinct branch-name

from loan

 The keyword all specifies that duplicates not be removed.

select all branch-name

from loan

©Silberschatz, Korth and Sudarshan4.6Database System Concepts

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select *

from loan

 The select clause can contain arithmetic expressions involving

the operation, +, –, , and /, and operating on constants or

attributes of tuples.

 The query:

select loan-number, branch-name, amount  100

from loan

would return a relation which is the same as the loan relations,

except that the attribute amount is multiplied by 100.

©Silberschatz, Korth and Sudarshan4.7Database System Concepts

The where Clause

 The where clause specifies conditions that the result must

satisfy

 corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch

with loan amounts greater than $1200.

select loan-number

from loan

where branch-name = ‘Perryridge’ and amount > 1200

 Comparison results can be combined using the logical

connectives and, or, and not.

 Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan4.8Database System Concepts

The where Clause (Cont.)

 SQL includes a between comparison operator

 E.g. Find the loan number of those loans with loan amounts

between $90,000 and $100,000 (that is, $90,000 and $100,000)

select loan-number

from loan

where amount between 90000 and 100000

©Silberschatz, Korth and Sudarshan4.9Database System Concepts

The from Clause

 The from clause lists the relations involved in the query

 corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower x loan

select 

from borrower, loan

 Find the name, loan number and loan amount of all customers

having a loan at the Perryridge branch.

select customer-name, borrower.loan-number, amount

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = ‘Perryridge’

©Silberschatz, Korth and Sudarshan4.10Database System Concepts

The Rename Operation

 The SQL allows renaming relations and attributes using the as

clause:

old-name as new-name

 Find the name, loan number and loan amount of all customers;

rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number

©Silberschatz, Korth and Sudarshan4.11Database System Concepts

Tuple Variables

 Tuple variables are defined in the from clause via the use of the

as clause.

 Find the customer names and their loan numbers for all

customers having a loan at some branch.

select distinct T.branch-name

from branch as T, branch as S

where T.assets > S.assets and S.branch-city = ‘Brooklyn’

 Find the names of all branches that have greater assets than

some branch located in Brooklyn.

select customer-name, T.loan-number, S.amount
from borrower as T, loan as S
where T.loan-number = S.loan-number

©Silberschatz, Korth and Sudarshan4.12Database System Concepts

String Operations

 SQL includes a string-matching operator for comparisons on character

strings. Patterns are described using two special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all customers whose street includes the substring

“Main”.

select customer-name

from customer

where customer-street like ‘%Main%’

 Match the name “Main%”

like ‘Main\%’ escape ‘\’

 SQL supports a variety of string operations such as

 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan4.13Database System Concepts

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan

in Perryridge branch

select distinct customer-name

from borrower, loan

where borrower loan-number = loan.loan-number and

branch-name = ‘Perryridge’

order by customer-name

 We may specify desc for descending order or asc for ascending

order, for each attribute; ascending order is the default.

 E.g. order by customer-name desc

©Silberschatz, Korth and Sudarshan4.14Database System Concepts

Set Operations

 The set operations union, intersect, and except operate on

relations and correspond to the relational algebra operations



 Each of the above operations automatically eliminates

duplicates; to retain all duplicates use the corresponding multiset

versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it

occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan4.15Database System Concepts

Set Operations

 Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
except
(select customer-name from borrower)

(select customer-name from depositor)

intersect

(select customer-name from borrower)

 Find all customers who have an account but no loan.

(select customer-name from depositor)

union

(select customer-name from borrower)

 Find all customers who have both a loan and an account.

©Silberschatz, Korth and Sudarshan4.16Database System Concepts

Aggregate Functions

 These functions operate on the multiset of values of a column of

a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

©Silberschatz, Korth and Sudarshan4.17Database System Concepts

Aggregate Functions (Cont.)

 Find the average account balance at the Perryridge branch.

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)

from account

where branch-name = ‘Perryridge’

select count (*)

from customer

select count (distinct customer-name)

from depositor

©Silberschatz, Korth and Sudarshan4.18Database System Concepts

Aggregate Functions – Group By

 Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must

appear in group by list

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number

group by branch-name

©Silberschatz, Korth and Sudarshan4.19Database System Concepts

Aggregate Functions – Having Clause

 Find the names of all branches where the average account

balance is more than $1,200.

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups

select branch-name, avg (balance)

from account

group by branch-name

having avg (balance) > 1200

©Silberschatz, Korth and Sudarshan4.20Database System Concepts

Null Values

 It is possible for tuples to have a null value, denoted by null, for

some of their attributes

 null signifies an unknown value or that a value does not exist.

 The predicate is null can be used to check for null values.

 E.g. Find all loan number which appear in the loan relation with

null values for amount.

select loan-number

from loan

where amount is null

 The result of any arithmetic expression involving null is null

 E.g. 5 + null returns null

 However, aggregate functions simply ignore nulls

 more on this shortly

©Silberschatz, Korth and Sudarshan4.21Database System Concepts

Null Values and Three Valued Logic

 Any comparison with null returns unknown

 E.g. 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true, (unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown, (false and unknown) =

false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to

unknown

 Result of where clause predicate is treated as false if it

evaluates to unknown

©Silberschatz, Korth and Sudarshan4.22Database System Concepts

Null Values and Aggregates

 Total all loan amounts

select sum (amount)

from loan

 Above statement ignores null amounts

 result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes.

©Silberschatz, Korth and Sudarshan4.23Database System Concepts

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is nested

within another query.

 A common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan4.24Database System Concepts

Example Query

 Find all customers who have both an account and a loan at the

bank.

 Find all customers who have a loan at the bank but do not have

an account at the bank

select distinct customer-name

from borrower

where customer-name not in (select customer-name

from depositor)

select distinct customer-name

from borrower

where customer-name in (select customer-name

from depositor)

©Silberschatz, Korth and Sudarshan4.25Database System Concepts

Example Query

 Find all customers who have both an account and a loan at the

Perryridge branch

 Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

(Schema used in this example)

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = “Perryridge” and

(branch-name, customer-name) in

(select branch-name, customer-name

from depositor, account

where depositor.account-number =

account.account-number)

©Silberschatz, Korth and Sudarshan4.26Database System Concepts

Modification of the Database – Deletion

 Delete all account records at the Perryridge branch

delete from account

where branch-name = ‘Perryridge’

 Delete all accounts at every branch located in Needham city.

delete from account

where branch-name in (select branch-name

from branch

where branch-city = ‘Needham’)

delete from depositor

where account-number in

(select account-number

from branch, account

where branch-city = ‘Needham’

and branch.branch-name = account.branch-name)

 (Schema used in this example)

©Silberschatz, Korth and Sudarshan4.27Database System Concepts

Example Query

 Delete the record of all accounts with balances below the

average at the bank.

delete from account

where balance < (select avg (balance)

from account)

 Problem: as we delete tuples from deposit, the average balance

changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

©Silberschatz, Korth and Sudarshan4.28Database System Concepts

Modification of the Database – Insertion

 Add a new tuple to account

insert into account

values (‘A-9732’, ‘Perryridge’,1200)

or equivalently

insert into account (branch-name, balance, account-number)

values (‘Perryridge’, 1200, ‘A-9732’)

 Add a new tuple to account with balance set to null

insert into account

values (‘A-777’,‘Perryridge’, null)

©Silberschatz, Korth and Sudarshan4.29Database System Concepts

Modification of the Database – Insertion

 Provide as a gift for all loan customers of the Perryridge branch, a

$200 savings account. Let the loan number serve as the account

number for the new savings account

insert into account

select loan-number, branch-name, 200

from loan

where branch-name = ‘Perryridge’

insert into depositor

select customer-name, loan-number

from loan, borrower

where branch-name = ‘Perryridge’

and loan.account-number = borrower.account-number

 The select from where statement is fully evaluated before any of its

results are inserted into the relation (otherwise queries like

insert into table1 select * from table1

would cause problems

©Silberschatz, Korth and Sudarshan4.30Database System Concepts

Modification of the Database – Updates

 Increase all accounts with balances over $10,000 by 6%, all

other accounts receive 5%.

 Write two update statements:

update account

set balance = balance  1.06

where balance > 10000

update account

set balance = balance  1.05

where balance  10000

 The order is important

 Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan4.31Database System Concepts

Case Statement for Conditional Updates

 Same query as before: Increase all accounts with balances over

$10,000 by 6%, all other accounts receive 5%.

update account

set balance = case

when balance <= 10000 then balance *1.05

else balance * 1.06

end

©Silberschatz, Korth and Sudarshan4.32Database System Concepts

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum
length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

 real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n
digits.

 Null values are allowed in all the domain types. Declaring an attribute to be
not null prohibits null values for that attribute.

 create domain construct in SQL-92 creates user-defined domain types

create domain person-name char(20) not null

©Silberschatz, Korth and Sudarshan4.33Database System Concepts

Date/Time Types in SQL (Cont.)

 date. Dates, containing a (4 digit) year, month and date

 E.g. date ‘2001-7-27’

 time. Time of day, in hours, minutes and seconds.

 E.g. time ’09:00:30’ time ’09:00:30.75’

 timestamp: date plus time of day

 E.g. timestamp ‘2001-7-27 09:00:30.75’

 Interval: period of time

 E.g. Interval ‘1’ day

 Subtracting a date/time/timestamp value from another gives an interval value

 Interval values can be added to date/time/timestamp values

 Can extract values of individual fields from date/time/timestamp

 E.g. extract (year from r.starttime)

 Can cast string types to date/time/timestamp

 E.g. cast <string-valued-expression> as date

©Silberschatz, Korth and Sudarshan4.34Database System Concepts

Create Table Construct

 An SQL relation is defined using the create table

command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),

...,

(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table branch

(branch-name char(15) not null,

branch-city char(30),

assets integer)

©Silberschatz, Korth and Sudarshan4.35Database System Concepts

Dynamic SQL

 Allows programs to construct and submit SQL queries at run

time.

 Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account

set balance = balance * 1.05

where account-number = ?”

EXEC SQL prepare dynprog from :sqlprog;

char account [10] = “A-101”;

EXEC SQL execute dynprog using :account;

 The dynamic SQL program contains a ?, which is a place holder

for a value that is provided when the SQL program is executed.

©Silberschatz, Korth and Sudarshan4.36Database System Concepts

ODBC

 Open DataBase Connectivity(ODBC) standard

 standard for application program to communicate with a database

server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan4.37Database System Concepts

ODBC (Cont.)

 Each database system supporting ODBC provides a "driver" library that

must be linked with the client program.

 When client program makes an ODBC API call, the code in the library

communicates with the server to carry out the requested action, and

fetch results.

 ODBC program first allocates an SQL environment, then a database

connection handle.

 Opens database connection using SQLConnect(). Parameters for

SQLConnect:

 connection handle,

 the server to which to connect

 the user identifier,

 password

 Must also specify types of arguments:

 SQL_NTS denotes previous argument is a null-terminated string.

©Silberschatz, Korth and Sudarshan4.38Database System Concepts

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL

 JDBC supports a variety of features for querying and updating

data, and for retrieving query results

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

