
©Silberschatz, Korth and Sudarshan4.1Database System Concepts

CS & IT College

2018/2019 Semester 1

CS203 DB Principals

IS206 Fundamentals of DB

Chapter 4-1: SQL

Asst.Prof. Asaad Alhijaj
Reference:
“Database System Concepts Fourth Edition” by Abraham Silberschatz Henry F. Korth S. Sudarshan ,

McGraw-Hill ISBN 0-07-255481-9

 Basic Structure

 Set Operations

 Nested
Subqueries

 Derived Relations

 Modification of the

Database

 Embedded SQL,

ODBC and JDBC

©Silberschatz, Korth and Sudarshan4.2Database System Concepts

Schema Used in Examples

©Silberschatz, Korth and Sudarshan4.3Database System Concepts

Basic Structure

 SQL is based on set and relational operations with certain

modifications and enhancements

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ais represent attributes

 ris represent relations

 P is a predicate.

 This query is equivalent to the relational algebra expression.

A1, A2, ..., An(P (r1 x r2 x ... x rm))

 The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan4.4Database System Concepts

The select Clause

 The select clause list the attributes desired in the result of a
query

 corresponds to the projection operation of the relational algebra

 E.g. find the names of all branches in the loan relation
select branch-name
from loan

 In the “pure” relational algebra syntax, the query would be:

branch-name(loan)

 NOTE: SQL does not permit the ‘-’ character in names,

 Use, e.g., branch_name instead of branch-name in a real
implementation.

 We use ‘-’ since it looks nicer!

 NOTE: SQL names are case insensitive, i.e. you can use capital
or small letters.

 You may wish to use upper case where-ever we use bold font.

©Silberschatz, Korth and Sudarshan4.5Database System Concepts

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct

after select.

 Find the names of all branches in the loan relations, and remove

duplicates

select distinct branch-name

from loan

 The keyword all specifies that duplicates not be removed.

select all branch-name

from loan

©Silberschatz, Korth and Sudarshan4.6Database System Concepts

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select *

from loan

 The select clause can contain arithmetic expressions involving

the operation, +, –, , and /, and operating on constants or

attributes of tuples.

 The query:

select loan-number, branch-name, amount 100

from loan

would return a relation which is the same as the loan relations,

except that the attribute amount is multiplied by 100.

©Silberschatz, Korth and Sudarshan4.7Database System Concepts

The where Clause

 The where clause specifies conditions that the result must

satisfy

 corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch

with loan amounts greater than $1200.

select loan-number

from loan

where branch-name = ‘Perryridge’ and amount > 1200

 Comparison results can be combined using the logical

connectives and, or, and not.

 Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan4.8Database System Concepts

The where Clause (Cont.)

 SQL includes a between comparison operator

 E.g. Find the loan number of those loans with loan amounts

between $90,000 and $100,000 (that is, $90,000 and $100,000)

select loan-number

from loan

where amount between 90000 and 100000

©Silberschatz, Korth and Sudarshan4.9Database System Concepts

The from Clause

 The from clause lists the relations involved in the query

 corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower x loan

select

from borrower, loan

 Find the name, loan number and loan amount of all customers

having a loan at the Perryridge branch.

select customer-name, borrower.loan-number, amount

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = ‘Perryridge’

©Silberschatz, Korth and Sudarshan4.10Database System Concepts

The Rename Operation

 The SQL allows renaming relations and attributes using the as

clause:

old-name as new-name

 Find the name, loan number and loan amount of all customers;

rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number

©Silberschatz, Korth and Sudarshan4.11Database System Concepts

Tuple Variables

 Tuple variables are defined in the from clause via the use of the

as clause.

 Find the customer names and their loan numbers for all

customers having a loan at some branch.

select distinct T.branch-name

from branch as T, branch as S

where T.assets > S.assets and S.branch-city = ‘Brooklyn’

 Find the names of all branches that have greater assets than

some branch located in Brooklyn.

select customer-name, T.loan-number, S.amount
from borrower as T, loan as S
where T.loan-number = S.loan-number

©Silberschatz, Korth and Sudarshan4.12Database System Concepts

String Operations

 SQL includes a string-matching operator for comparisons on character

strings. Patterns are described using two special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all customers whose street includes the substring

“Main”.

select customer-name

from customer

where customer-street like ‘%Main%’

 Match the name “Main%”

like ‘Main\%’ escape ‘\’

 SQL supports a variety of string operations such as

 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan4.13Database System Concepts

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan

in Perryridge branch

select distinct customer-name

from borrower, loan

where borrower loan-number = loan.loan-number and

branch-name = ‘Perryridge’

order by customer-name

 We may specify desc for descending order or asc for ascending

order, for each attribute; ascending order is the default.

 E.g. order by customer-name desc

©Silberschatz, Korth and Sudarshan4.14Database System Concepts

Set Operations

 The set operations union, intersect, and except operate on

relations and correspond to the relational algebra operations

 Each of the above operations automatically eliminates

duplicates; to retain all duplicates use the corresponding multiset

versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it

occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan4.15Database System Concepts

Set Operations

 Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
except
(select customer-name from borrower)

(select customer-name from depositor)

intersect

(select customer-name from borrower)

 Find all customers who have an account but no loan.

(select customer-name from depositor)

union

(select customer-name from borrower)

 Find all customers who have both a loan and an account.

©Silberschatz, Korth and Sudarshan4.16Database System Concepts

Aggregate Functions

 These functions operate on the multiset of values of a column of

a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

©Silberschatz, Korth and Sudarshan4.17Database System Concepts

Aggregate Functions (Cont.)

 Find the average account balance at the Perryridge branch.

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)

from account

where branch-name = ‘Perryridge’

select count (*)

from customer

select count (distinct customer-name)

from depositor

©Silberschatz, Korth and Sudarshan4.18Database System Concepts

Aggregate Functions – Group By

 Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must

appear in group by list

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number

group by branch-name

©Silberschatz, Korth and Sudarshan4.19Database System Concepts

Aggregate Functions – Having Clause

 Find the names of all branches where the average account

balance is more than $1,200.

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups

select branch-name, avg (balance)

from account

group by branch-name

having avg (balance) > 1200

©Silberschatz, Korth and Sudarshan4.20Database System Concepts

Null Values

 It is possible for tuples to have a null value, denoted by null, for

some of their attributes

 null signifies an unknown value or that a value does not exist.

 The predicate is null can be used to check for null values.

 E.g. Find all loan number which appear in the loan relation with

null values for amount.

select loan-number

from loan

where amount is null

 The result of any arithmetic expression involving null is null

 E.g. 5 + null returns null

 However, aggregate functions simply ignore nulls

 more on this shortly

©Silberschatz, Korth and Sudarshan4.21Database System Concepts

Null Values and Three Valued Logic

 Any comparison with null returns unknown

 E.g. 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true, (unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown, (false and unknown) =

false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to

unknown

 Result of where clause predicate is treated as false if it

evaluates to unknown

©Silberschatz, Korth and Sudarshan4.22Database System Concepts

Null Values and Aggregates

 Total all loan amounts

select sum (amount)

from loan

 Above statement ignores null amounts

 result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes.

©Silberschatz, Korth and Sudarshan4.23Database System Concepts

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is nested

within another query.

 A common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan4.24Database System Concepts

Example Query

 Find all customers who have both an account and a loan at the

bank.

 Find all customers who have a loan at the bank but do not have

an account at the bank

select distinct customer-name

from borrower

where customer-name not in (select customer-name

from depositor)

select distinct customer-name

from borrower

where customer-name in (select customer-name

from depositor)

©Silberschatz, Korth and Sudarshan4.25Database System Concepts

Example Query

 Find all customers who have both an account and a loan at the

Perryridge branch

 Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

(Schema used in this example)

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = “Perryridge” and

(branch-name, customer-name) in

(select branch-name, customer-name

from depositor, account

where depositor.account-number =

account.account-number)

©Silberschatz, Korth and Sudarshan4.26Database System Concepts

Modification of the Database – Deletion

 Delete all account records at the Perryridge branch

delete from account

where branch-name = ‘Perryridge’

 Delete all accounts at every branch located in Needham city.

delete from account

where branch-name in (select branch-name

from branch

where branch-city = ‘Needham’)

delete from depositor

where account-number in

(select account-number

from branch, account

where branch-city = ‘Needham’

and branch.branch-name = account.branch-name)

 (Schema used in this example)

©Silberschatz, Korth and Sudarshan4.27Database System Concepts

Example Query

 Delete the record of all accounts with balances below the

average at the bank.

delete from account

where balance < (select avg (balance)

from account)

 Problem: as we delete tuples from deposit, the average balance

changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

©Silberschatz, Korth and Sudarshan4.28Database System Concepts

Modification of the Database – Insertion

 Add a new tuple to account

insert into account

values (‘A-9732’, ‘Perryridge’,1200)

or equivalently

insert into account (branch-name, balance, account-number)

values (‘Perryridge’, 1200, ‘A-9732’)

 Add a new tuple to account with balance set to null

insert into account

values (‘A-777’,‘Perryridge’, null)

©Silberschatz, Korth and Sudarshan4.29Database System Concepts

Modification of the Database – Insertion

 Provide as a gift for all loan customers of the Perryridge branch, a

$200 savings account. Let the loan number serve as the account

number for the new savings account

insert into account

select loan-number, branch-name, 200

from loan

where branch-name = ‘Perryridge’

insert into depositor

select customer-name, loan-number

from loan, borrower

where branch-name = ‘Perryridge’

and loan.account-number = borrower.account-number

 The select from where statement is fully evaluated before any of its

results are inserted into the relation (otherwise queries like

insert into table1 select * from table1

would cause problems

©Silberschatz, Korth and Sudarshan4.30Database System Concepts

Modification of the Database – Updates

 Increase all accounts with balances over $10,000 by 6%, all

other accounts receive 5%.

 Write two update statements:

update account

set balance = balance 1.06

where balance > 10000

update account

set balance = balance 1.05

where balance 10000

 The order is important

 Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan4.31Database System Concepts

Case Statement for Conditional Updates

 Same query as before: Increase all accounts with balances over

$10,000 by 6%, all other accounts receive 5%.

update account

set balance = case

when balance <= 10000 then balance *1.05

else balance * 1.06

end

©Silberschatz, Korth and Sudarshan4.32Database System Concepts

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum
length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

 real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n
digits.

 Null values are allowed in all the domain types. Declaring an attribute to be
not null prohibits null values for that attribute.

 create domain construct in SQL-92 creates user-defined domain types

create domain person-name char(20) not null

©Silberschatz, Korth and Sudarshan4.33Database System Concepts

Date/Time Types in SQL (Cont.)

 date. Dates, containing a (4 digit) year, month and date

 E.g. date ‘2001-7-27’

 time. Time of day, in hours, minutes and seconds.

 E.g. time ’09:00:30’ time ’09:00:30.75’

 timestamp: date plus time of day

 E.g. timestamp ‘2001-7-27 09:00:30.75’

 Interval: period of time

 E.g. Interval ‘1’ day

 Subtracting a date/time/timestamp value from another gives an interval value

 Interval values can be added to date/time/timestamp values

 Can extract values of individual fields from date/time/timestamp

 E.g. extract (year from r.starttime)

 Can cast string types to date/time/timestamp

 E.g. cast <string-valued-expression> as date

©Silberschatz, Korth and Sudarshan4.34Database System Concepts

Create Table Construct

 An SQL relation is defined using the create table

command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),

...,

(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table branch

(branch-name char(15) not null,

branch-city char(30),

assets integer)

©Silberschatz, Korth and Sudarshan4.35Database System Concepts

Dynamic SQL

 Allows programs to construct and submit SQL queries at run

time.

 Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account

set balance = balance * 1.05

where account-number = ?”

EXEC SQL prepare dynprog from :sqlprog;

char account [10] = “A-101”;

EXEC SQL execute dynprog using :account;

 The dynamic SQL program contains a ?, which is a place holder

for a value that is provided when the SQL program is executed.

©Silberschatz, Korth and Sudarshan4.36Database System Concepts

ODBC

 Open DataBase Connectivity(ODBC) standard

 standard for application program to communicate with a database

server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan4.37Database System Concepts

ODBC (Cont.)

 Each database system supporting ODBC provides a "driver" library that

must be linked with the client program.

 When client program makes an ODBC API call, the code in the library

communicates with the server to carry out the requested action, and

fetch results.

 ODBC program first allocates an SQL environment, then a database

connection handle.

 Opens database connection using SQLConnect(). Parameters for

SQLConnect:

 connection handle,

 the server to which to connect

 the user identifier,

 password

 Must also specify types of arguments:

 SQL_NTS denotes previous argument is a null-terminated string.

©Silberschatz, Korth and Sudarshan4.38Database System Concepts

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL

 JDBC supports a variety of features for querying and updating

data, and for retrieving query results

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

